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INVESTIGATION OF THE POSSIBILITY OF SIMPLIFYING
MISSILE GUIDANCE SYSTEMS BY THE USE
OF FREE-FLOATING FLAPS AND SFRING-
MOUNTED CONTROL SURFACES -

By Katsuml Hikido, Paul E. Hayashi,
and Henry C. Lessing

SUMMARY

The use of aerodynemic and mechenical devices for improving the
response of guided missiles is investigated. An analysis is made which
shows that by the use ofa.free-floating flaps and spring-mounted cortrol
surfaces it should be possible to improve the -airframe longitudinal
demping and to decrease ‘the variation of the steady—state maneuverdbllity
with flight condition to an extent such that electronic automstic stabili-
zation and gain-adjusting.devices can be eliminated. An'application of
the anslysis is presented in which the design of & free-fToating flap
damper is considered, and results of a wind-tunnel test are presented
which show that a flap with the desired linear characteristics can be
obtained.
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INTRODUCTION

In the design of a guilded missile, the fundamental problem consists
of integrating the serodynemic characteristics and guidance system in a
manner such that the missile can be controlled accurately throughout its
flight. Por certaln types of nissiles, such as the boost-glide type, the
flight conditions msy very over a fairly wide range, and it is necessary
to design the missile so that adequate maneuverability is retained over
the entire range. It is known that Mach number and altitude changes have
a marked effect on missile performance and that some mesns must be pro-
vided to compensate for these changes if the performsnce is to be adequate
for all flight conditions. In particular, the serodynamic damping of
missile airframes, especially at high altitudes, is so low that some means
of automatic stabilization is necessary, and the wide variation with -
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dynamic pressure of the maximum availeble turning rate requires the use
of a gain-adjusting mechenism. Until recently, electronic devices have
been used to cope with these problems, but the growing complexity of
guldance systems heas made it desirable that the possibilities of a dif-
ferent approach be investigated. . h

Currently increased effort 1s being directed toward the investigation
of mechanicel and aerodynamic devices for improving the characteristics of
missile airframes, and it is the purpose of this report to consider a few
devices which appesr to show some promise in this regard. In the .past
some Investigations on the effect of free conbrols on the stability of
airplenes have been made (see, e.g., refs. 1, 2, and 3) in which it is
shown that the demping of the airplane can be altered apprecisbly by
changes in the aerodynemic and mass charecteristics of the free control.
In the analysis preesented herein consideratlon is given to methods of
choosing combinations of these characteristics which will result in
increased airframe damping and, in addition, to means of reducing the
effect of Mach number and dynemic pressure changes on the steady-state
meneuverability.

This report is concerned with a theoretical study based on linear
aerodynemic perasmeters of methods for reducing the variation in the mexi-
mum gvaileble turning rete and a study of stability diagrams to determine
the flap characteristics necessary to improve the missile damping over
the specified renge of flight conditions. In addition, the design of a
flap with the desired linear charscteristics is considered snd wind-tunnel
data are presented to demonstrate the feasibility of obtaining these
characteristics. .

SYMBOLS

8¢ loéélwﬁﬁeed of sound, ft/sec
AgsA

07174 coefficients of the characteristic equation
As,Ag 3 -
b wing span, ft

¢ mean aerodynemic chord of wing, M.A.C., £t

Cp mean aerodynemic chord of free-floating flap, ft

CeZ center of gravity

Cn hinge-moment coefficient of one flap or control surface

(based on M.A.C. and area of wing unless otherwise noted),

hinge moment
AN 2

gSc

1’i||
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drsg coefficient,

rolling-moment coefficient,

1lift coefficient,

pitching-moment coefficient,

dCr,
da
aCL
)
BCL
N
aCL

d(&a/2v)

3,

3(6&/2v)

__Cn
3(6z/av)

20,

drag force

~ .

e

rolling moment

lifting force

qSb

pitching moment

aSc
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oCp

c
o 3%

- oCh
hg a(3z/2v)

aCh

Cap dA

oCh

Cn: —
A d(Az/2v)

D,(') differentiation with respect to time, é%

F(D) symbol for the characteristic equation

g acceleration due to gravity, f£t/sec2 -
h altitude, £+t
H hinge moment, £t-ib
OH
Hp SZ
dE
He, da
3K N e
q& A
Hy velue of flap mass-unbalance hinge moment for which the damping

and frequency of the missile with flaps floating freely are
equal to those of the missile with flaps fixed, f£t-1b

Hp velue of flap mass-unbalence hinge moment for the divergence
boundary, £t-1b

He value of flap mass-unbalance hinge moment for which the gain of

the missile with flaps floating freely is equal to that of the
missile with flaps fixed, £t-1b T . _

SOOI,
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NI

moment of inertia of canard control surface sbout its hinge line,
slug-ft2

moment of inertia of free-flosting flap sbout i1ts hinge line,
slug-£t2

longitudinal moment of inertia of miseile about its center of
gravity, slug-ft2

spring constant for the torque spring on which the canard control
surface is mounted, ft-1b/radian

distance from hinge line of canard control surface to missile
center of gravity, £t

distance from hinge line of free-floating flap to missile center
of gravity, £t

mass of missile, slugs

mass of one canard control surface, slugs

mass of one free-floating flap, slugs

free-stream Mach number

roll rate, radians/sec, or root of characteristic equation
free-stream dynamic pressure, 1b/ft2

idamping factor

‘Reynolds number, based on M.A.C. of wing, or Routh's discriminant
(see eq. (15)).

itotal area of two coplanar wing panels, including the portion
enclosed by the body, sqg £t

%area of one free-flogting flap, sq ft

;distance from center of gravity of canard control surface to its
hinge line, positive for center of gravity behind the hinge
line, £t

édistance from center of gravity of free-floating flap to its
hinge line, positive for center of graviiy behind the hinge
line, ft
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Ty/o time required for the envelope of an osclllation to damp to one-

helf of its amplitude, - S22
Vi velocity, ft/sec
We weight of one free-floating flap, lb~
X distence from center of pressure to missile center of gravity,

positive for center of gravity forward of center of pressure, ft

o angle of attack, radians unless otherwise indicated
(see fig. 1)

7 flight path angle, radians unless otherwise indicated
(see fig. 1)

1) deflection angle of canard control surface, radians unless other-
wise indicated

A deflection angle of free-floating flap, radians unless otherwise
indicated

Dyom nominal value of deflection of flap, uncorrected for aerodynamic
load, deg

€ deflection angle of control surface actuator, radians unless

otherwise indicated . . - . . —_— =

¢ damping ratio (see eq. (26))
e angle of pitch, radiens unless otherwise indicated
(see fig.~1)
mcsc 2
Ea mass-unbalance term for one canard control surface, 55 sec2/ft
Q
MpSg
§f mass-unbalance term for one free-floating flap, —, secz/ft
: c
o density of air, slugs/cu ft
I
Oa ==X, sec2 - -
qsS¢é
I
7 —QL, sec® -
gsc

Ly 1o



NACA RM A55L.09 1“%%@3&&@ . T

- :-.:taﬁ_ -""J“

Ie
2
Uf q_SE, sec
2m
fact ——, sec

2T mass factor, pVS’

0 w?, 1/sec?

w frequency of oscillstion, radians/sec
(é. flap gain, steady-state deflection of free-floating flap per unit

& sS capard-control-actuator deflection
<%> turning-rate gain, steady-state turning rate of missile per unit

<, S8 canard-control-~actuator deflection

<§> turning-rate gain, steady-state turning rate of missile per unit
88 canard-control-surface deflection

Subscripts
] canard control surface
i free-flogting flap
nom nominal value of flap deflection uncorrected for aercdynamic loads
8s steady-state condition
ANAT.YSTS

In the analysis which follows, the problems of reducing the variastion
with flight condition of the maximum turning rate and of increasing the
demping of airframes will be considered. Throughout the analysis it has
been assumed that the aerodynemic force and moment coefficients depend
linearly on their respective varisbles and that the missile airframe is
perfectly rigid. It is realized that linear serodynamic coefficients are
difficult to achieve; however, the insight and physical interpretation
possible through the use of a "linear" analysis make it & valuable tpol
for the study of relatively complex systems. Conslideration is given in a
later section to means for obtaining linear hinge-moment coefficients.
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The geometric characteristics of the missile to be analyzed are
shown in figure 1. This configuration was chosen for purposes of illus-
tration as representing s typicel air-to-air missile, and estimated values
of its mass and aserodynamic characteristics are given in tables I and II.
The angles which define the inclinetion of the missile and deflections of
surfaces with respect to their reference plahes are positive as shown.

To avoid confusion, the term "flap" will always be used to refer to
the free-floating surfaces attached to the wings, and the term "control
surface" will refer to the canard control surfaces.

The Variation of Turning-Rate Qain With Altitude

Gain variation of the position-servo missile.- In this section and
throughout the discussion which follows, the term "gasin® is used in the
conventional manner to refer to the steady-state value of the ratio of
an output gquantity to the input quantity causing the change in output.
With & position-servo control; the details of which are shown sketched
in figure 2(a), the missile responds to an error signal by specifying a
control-surface deflection which is proportionasl to the signel.

The equation for 1ift for this case may be written in operator nota-
tion as

<2TD + Cpy 'e—v D + CLQ>7 - [(ch +CLg) 57 D+ cLa] 6 = Crgd (1)

The terms CL and Cr,, are small compared to the other terms and may be

disregarded w1thout introducing any 51gn1f1cant errors. Equation (1) then
becomes -

<2TD + CLc.>7' CLy,® = Crgd (2)

Similarly, the equation for pitching moment may be written

<?md.é% D+ Cm;>7 + [UAD2.4 <?mq + Cps é% D - Gma]e = Cngd (3)
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The turning-rate gain is obtained by solving for (7/8) from equations (2)
and (3) and then setting D = O in the resulting equation. If this is
done, the expression for the gain is derived as

@.. - e ()
®/ss  oreg, + CLoCmy o7

It is indicated in Appendix A that the second term in the denominstor 1s
generally small compared to the first and may be disregarded, leaving

O 20 o 2 )

Note that the dynamic pressure ¢ appears explicitly in this expression;
hence the gain will vary by a factor of approximately 10 for an altitude
range of sea level to 60,000 feet. This variation, shown for the present
missile by the dashed line in figure 3, is undesirable from the standpoint
of autopilot design, and some means of reducing it to acceptable limits

is needed. Several devices will be considered in the follgwing sectioms.

Influence on the gain of free-floating flaps.- It is known that free-
floating flaps caen change appreciably the damping of airframes, but first
it will be necessary to determine their influence on the steady-state
turning rate of the missile. The problem is one involving the three
degrees of freedom %, 6, and A, and, in accordance with the essumptions
made previously, the equations of motion may be written as

<2'rD + CIu>7 - <CLG>9 - <CLA>A = CLgd (6)

<cm‘i 2y o+ Cm“>7+ [“ADZ - (C‘"q+0m&> 2v D" Cma,]e <%>A = Cmg®  (7)

<§fVD '%)'[(“f*‘ﬁflf D2 - Cp_ Evf_ D-ChGJe-(crfDZ-chCEL 5% D'ChA>A -0
(8)

where the hinge-moment coefficlents of equation (8) are based on the mean
serodynsmic chord and sarea of the wing. Egquation (8) is the equation
of motion for one flap only, but since symmetry of motion is assumed and

1%

M AT X
; .q;ﬁiiﬁﬁ“ﬁ}"'
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two flaps will deflect as a unit, the 1lift and pitching-moment coeffi-
clents due to flap deflection <?pA and Cq;> are for two flaps deflected

together. It has been assumed here that the 1ift and pitching moments
due to rate of change of flap deflectlion and the hinge moment of the flap
due to control deflection are negllgible From these equations the -
expression for the gain is - - — o :

@)ss = I:CI.g,(OmACha - cmacbﬂ> + Cgl CL,Chp, - GIAChOD ] [21‘ <CmACha - cmmchﬁ> +
(cmAch - cmaclﬂ> <vgf +%§- cha> +Cmg —2% (Ch&CLA -ChACLOD ]-l (9)

which reduces to equation (4), as 1t should, when the flap e.fectiveness
Cﬁa’ CmA is set equal to zero. As for the previous case, some of these

terms are smell and may be disregarded (see Appendix A}, and the gain is
given with good accuracy by

0, - @) 2lon ) ooy )

(CLQCmA CraOn,) * (CanCrg ~OngSin)
(10)

Note that the form of equation (10) is similar to that of equation (5);
thus it would be expected thet the free-floating flap would not reduce
the variation in galn with altitude. The variation for the missile with
free-floating flaps for typical values of the aerodynemic parasmeters
(table IT) is shown by the solid line in figure 3 and is again approxi-
mately a factor of 10.

Influence on the gain of spring-mounted control surfaces.- Since
the variations in gain obtained for the above cases are unacceptable,
some other approach must be used. One solution to the problem is to _
mount the control surface on a torque spring so that its deflection will
be influenced by the aerodynamic moments imposed upon it. The displace-
ment of the servo is still proportionmal to the error signal as before.
This device is illustrated by the sketch in figure 2(b), which compares

an?
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To determine the influence of the torque spring on the gain veriation, the followlng eque-
tion of motion. is assumed for the canard conbtrol surface:

Kq

(gcw) - ch%>7+[ Eole - cc)nz-chqc&% D-l)] (cha chﬁ D~ ch5+ KT 5—--(1—82.:—(-: (11)

where Kp 1is the spring constant of the torque spring, and all aerodynamic derivatives, ineluding

hinge-moment coefficients, sre based on the mean serodynsmic chord and ares of the wing. It is

desired to find only the effect of the spring on the missile gain hence the system is defined by
- =l e "

equatiocns (;.;, (J,, anc {.u.,v IP, for simplicity, the mass-unbalsace term MeBe 18 88t equal to

zero, there results the followling expression for the turning-rete gain:
K| CroCmg = CLﬁcm%>
5 = 1
G~ L) z L+ = -
(Chaqsc KT) (ETCI”G*CI@C"’Q ev) O {ETCI”'SJ’ “lemg 2y * ¥ (%Cmﬂ cL@CmB) ]

@) -
\':'/gs

This expression cen be simplified as for the other cases (see Appendix A) giving

@) -] e~ e | (13)
s TeaoM g /Cha -2 CmgC
L_mﬁ\ aSe/ - DGQJ

Note thet the dynamic pressure q appears only as 8 factor in one of the terms of the dencminstor)
hence its effect has been suppressed. Fhysically it can be seen why the gain becomes less sensi-
tlve tc changes in q. As the dypamic pressure incresses, the effective spring constent

(chb - (KT/ch)) becomee smaller; hence the deflection of the control surface for a given servo

60TCEY WE VOVN

e AN

¥
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displacement € also decreases. The increasing effectiveness of the
control surface 1s thus compenssted for by smsgller deflections. Mach
number still appears explicitly but, since gll the coefficients are
affected by Mach number changes, it 1ls not possible to see the influence’
of Mach number from equation (13). It will be seen later, however, that
Mach number effects have also been reduced. It is evident from equa-
tion (13) that if the spring constant goes to zero, the gain will also
g0 to zero. For very large values of spring constant, the term KT/qSE
becomes the dominent term in the denominator, and the expression (13)
for the gain approaches that given by equation (5) for the gain of the
missile with a position control. Therefore, <If the beneficial effect of
the spring is to be realized, some intermediste value of Kp 1is needed.
For reasons which will be discussed in a later section, a value of

Kp = 10.35 foot-pounds per radian was chosen. It can be seen from fig-.
ure 3 that the gain varisation has been reduced considerably, varying by
a factor of only 2 éver the indicated altitude range. :

It should be mentioned here that the gain variation with altitude -
can be reduced also by using a torque servo to actuste the control sur-
faces. The principle of the torque serve is similar to that of the
torque spring; the servo responds to an input signal by specifying a
hinge moment on the control surface, whereupoii the control surface
deflects until the specified torque is balanced by the externsl aero-
dynamic hinge moment acting on the surface. It can readily be seen that
the control-surface deflections are influenced by the dynamic pressure
and will decrease with increasing g, thus compensating for the change
of flight condition in exactly the same menner as for the torque spring.
Since the principle involved in the use of these two devices is similar,
it was decided to analyze only the effects of the torque spring in the
present investigation. As a matter of interest, however, the equations
for a missile equipped with a torque servo are given in Appendix A, and
the variation in turning-rate gain with altitude and Mach number sre

given in figure L.

Augmentetion of Alrframe Demping

In the preceding sections, it was found that the spring-mounted
cenard control surfaces provide satisfactory compensation for the gain
variation with altitude. 1In the following section, the feasibility of
increasing the damping of airframes through the use of free-~floating
surfaces will be investigated. It is possible to use the canard surfaces
to provide added demping as well as to compensate for the gain variation;
however, in the present case the flaps on the main lifting surfaces, as
shown in figure 1, were utilized to provide damping. A similar investi~
gation was carried out by Curfman, Strass,and Crane in reference 4, The
analysis to follow is based on a study of contours of constant damping

I

j ¥4
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and frequency constructed by the method of reference 5. For convenience
in the discussion, the term "basic missile"” will henceforth be used to
refer to the configuration consisting of the missile with the spring-
mounted canard controls and with flaps fixed.

Method of analysis.- The characteristic equation derived from equa-
tions (6}, (1), (8), and (11) is of sixth order; however, it will be shown
later that simplifying assumptions can be made which reduce the equation
to one of fourth order having the form

F(D) =D* + AD® + ALD® + AD + Ao = O (14)

where the coefficients are functions of the flap and missile parameters.
The solution of equation (lh) determines the stability of all the degrees
of freedom of the system, and the motion of each degree of freedom has
the form

Plt pot Pat

t
2 3
C,e + Coe + Cqe + C e

Py

where p,, Dy, Py, and p, are the roots of equation (lh) and the coeffi-
clents C,, Cy, Cg, and C, are determined from Initial conditions. Note
that the motion of each degree of freedom is composed of the sum of four
modes, and the magnitude of each mode making up the sum is determined by
the slze of its coefficient. If any of the roots are complex, they must
appear In conjugate pairs, and the corresponding modes combine to form
one oscillatory mode. Thus each degree of freedom mey be represented by
the sum of two oscillatory, one oscillatory and two speriodie, or four
aperiodic modes of motion. The complex roots have the form

P=r iw

and the motion will be steble only when all the numbers r have negative
values. To insure this condition, i1t is necessary to satisfy the well-
known conditions for stability, which state that all the coefficients of
equation (14) and the Routh discriminant given by

R = AjAzAg - A,% - AGASP (15)

must have the same sign if the motion is to be stable. If all but two of
the parameters comprising the coefficients of equation (14) are fixed,
stability diagrams which show the combination of parameters giving stable
motion can be constructed in the plane of the two parameters. The
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oscillatory boundary, which represents points where an oscillatory mode
of motion has zero damping, is obtained by setting equation (15) to zero,
and the divergence boundary, where an aperiodic mode is neutrally stable,
by setting the coefficient A, equal to zero. The stable region will
be that portion of.the disgram lying on the positive side of both bounda-
ries. Furthermore, as shown in reference 5, additional contours of con-
stant damping and frequency can be constructed by assuming a soclution
D=r + iw and substituting into equation (14). This results in a com-
Dplex equation which can be written as two real equations by equating the
real and imeginary parts to zero. Cerrying out this procedure for the
Present case results in the two parametric equations

br® + 38ar% + (28, - bu)r + A, - pAg =0 (16)

r® + Agr® + (A2 - 6u)r® + (By - 3uAs)r + Ao - pAp + 2 =0 (17)

where - =wf. If r is set equal to zero and y is eliminated from
equations (16) and (17), it can be seen that the result is exactly the
Routh discriminsnt R. To obtain curves of constant damping, a value is
chosen for the damping r, end equations (16) and (17) are solved in
terms of the variable parameter p for the gquentitlies whose effects are
being investigated.  The frequency of oscillstion at each point along
the contours thus obtalned is given by 4_72x, and if the same sequence
of values of | 1is used for each value of ¥, curves of constant Pre-
guency can be obtained simultaneously with the comstant-damping curves.

Substitution of the complex root, D = r + 1w, into equation (1k)
Presupposes the presence of oscillatory modes of motion, and the proce-
dures outlined above will yield points only for those regions where at
least one osclllatory mode occurs. .

Application of the analysis.- The equations of motion defining the
system consisting of the missile with spring-mounted control surfaces
and free-floating flaps are given by equations (6), (7), (8), and (11).
As stated in the preceding section, the charadteristic equation derived
from these equations of motion is of sixth order. It is not necessary,
however, to use this sixth-order equation since some simplifying assump-
tions can be made which reduce considerably the complexity of the )
problem.

If the natural frequency of the canard control surface is much
greater than that of the missile, the missile mode of motion will be
relatively undisturbed by the high-frequency oscillations of the control
surface. Conversely, the control surface will follow almost exactly the
motion of the missile, and the only deflection of the surface with —

L iy
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respect to the missile axis will be due to the static aerodynamic moments
imposed upon it. The inertial and damping terms can thus be dropped
from equation (11) which can then be written as

Chgo? *+ (—— D - 1>chace + qsas Ch5> s (18)

Ol

The use of equation (18) in the place of equation (11) for the canard
control surface reduces the characteristic equation to one of fourth
order.

In order for the use of equation (18) to be velid, the spring con-
stant Xp must be made large enough so that the natural frequency of
the control surface will be large relative to that of the missile. It
mist not be made too large, however, since, as shown previcusly, the
variation in gain with altitude spproaches that of the position-servo
missile for very large values. Since the gain can be msde independent
of saltitude only for the trivial case of zero spring constant, some
variation in gain with altitude must be expected. It was decided that
a gain variation by a factor of 2 in the altitude range of 5,000 to 60,000
feet was acceptable; the resulting value of Kp = 10.35 foot-pounds per
radian gave a control-surface natural frequency approximately 23 times
that of the basic missile airframe.

As & check on the validity of the foregoing assumptions, the roots
of the exact sixth-order equation and the simplified fourth-order version
were obtained for the missile at a flight condition of 30,000 feet alti-

tude and a Mach number of 1.5. The roots of the sixth-order characteris-
tic equation are

D, = -29.96
Dy = ~2156.23
Dg,s = =2.00 = 17.02
D5,e = -0.01 % i2hT.71
and the roots of the fourth-order equation are
D, = -29.96
-2156.23

Dz

Dg,4 = -2.00 % 17.02

vy ¥ . .
VoI Dmegteteyr..
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The last pair of roots of the sixth-order equation corresponds to the ]
cansrd surface mcde of motion, and it can be seen that its oscillations
are of high frequency with a low amount of damping. This small amount

of demping is due to the fact that Cng was assumed to be zero in equa~
tion (ll), and the value shown above is due only to interaction with the
misslile motion. A comparison of the other roots, which correspond %o the
missile and floating-flap modes of motion shows that, to the accuracy
with which they were obtained, they are identical; therefore, for the
purposes of this report wherein the missile responses and the character-
istics of the floeting flap are of primary concern, the equations of
motion (6), (7), (8), eand the simplified equation (18) are adequate to
represent the systen.

The cheracteristic equation derived from these equations of motion -
cen be written in the form of équation (14). The coefficients Ay, Az,
As, and Az are functions of the missile and flsp parsmeters and are
given in complete form in Appendix B. Stability diagrams can now be con-
structed for the system represented by equation (14) by taking two of
the quantities as coordinates as was discussed in the preceding section.
The two quantities to be chosen were determined by the following
considerations.

Since it is desired to find the effects of the floating-flap charsc-
teristics on the missile response, the choice of parameters 1s limited to
those .involving the flap, namely, Hy, Ha, HA, and the mess-unbalance
hinge moment. The hinge moments Hy and Hy are functions of Mach number
and. dynsmic pressure and, in general, will not remain constant as flight
conditions change. On the other hand, preliminsry computations showed _ -y
that, in general, values of HA much larger than can be obtained aero- . o
dynamically were desirable, and some aux1llary mechenical or viscous
damping device is needed. The serodynemic flap damping is thus only a
small part of the total demping, and HA 1s essentially independent of
flight conditions. Similarly, the mass-unbalance hinge moment is a func-
tion only of the mass characteristics of the flap end is, therefore,
independent of flight conditions alsc. This independence of flight con-_
dition, end the fact that they mey be varied completely independently of
each other, serves to make stability diagrams having HA and mass-
unbalance hinge moment as coordinastes more uséful from the standpoint of B
design.

Discussion of the stability diagram.- A typical stability diagram i1s
shown in figure 5 for the flight condition of 30,000~feet altitude and a
Mach number of 1.5. The ordinates represent values of HA, negative
upward, and the abscissas represent values of flap mass-unbalance hinge
moment. Positive velues of mass-unbalsnce moment correspond to the cases .
where the center of gravity of the flap lies behind its hinge line. Only
the first two quadrants are shown in the figure since one branch of the
oscillatory stability boundary (R = O) is essentlally coincident with the I

horizontal axis. The divergence boundary (Ag = O) is independent of
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damping about the flap hinge line and appears in the figure as a vertical
line extending sbove snd below the horizontal axis. The oscillatory
stability boundary first appears in figure 5 at the upper right-hand cor-
ner of the figure. It may be seen that as the damping sbout the flap
hinge line is decreased, the mass-unbalance hinge moment necessary to
cause a neutrally damped oscillatory mode first decreases and then
increases. As HA 1s decreased further, the mass-unbalance hinge moment
on the boundasry increases to a value of approximately 0.75 foot-pounds
after. which the boundary reverses suddenly and becomes essentially coin-
cident with the horizontal axis as indicated in sketch (a)}. In order to
indicate the variation of oscil- .
lation frequency of the neutrally NN \\\\\\\ N
dsmped mode on the boundary, the b°d
frequencies are noted in figure 5 N 0\)“

in cycles per second at points §0 ©

T
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designated by the small open :Eg\ S
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damping originstes on the bound-
ary of equal roots, two branches
of which are shown in figure 5. 3 Y
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parts of two complex conjugate 7 v/ 5L/
roots defining an oscillatory 0 \ ; ///A/ //////,/
mode represented by the constant \ /
. ¥
damping contour degenerates into & A %
two aperiodic modes, both of which 0
time. In figure 5 each of the constant
damping curves originates on the upper branch of the boundary of equal
moves out along the boundary. For very high velues of damping, other
constant damping curves not shown in the figure lie below and originate

N\
mode of motion become equal to \\‘;7/ 7/ // WeSg =0
zero; therefore, the oscillatory G\: (0}
damp to half amplitude in the indicated Sketch (a)
roots and, as the damping is increased, the starting point of each curve
on the lower brench of the boundary.

The constant damping curve of greatest interest in figure 5 is that
which has the same T,/, as the missile with the free-floating flaps
fixed. The T,/ for this case was calculated to be 0.63%4 second. This
curve is discontinuous at f = 1.69 cycles per second, which corresponds
to the short period longitudinal mode of the basic airframe. Note that
the curve is asymptotic to the vertical line designated H,, which will
be discussed in more detsil later. As the frequency is increased beyond
1.69 cps, a new branch of this curve starts in the fourth quadrant and
forms & small loop in the first quadrant lying between the boundary of
equal roots and the lower branch of the oscillatory boundary. This
branch of the curve has been omitted for purposes of clarity. The region
of greatest interest is that area enclosed by the initisl portion of the
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constant damping curve designated by Iy/2 = 0.634 second and the diver-
gence boundary. This regilon represents the values of flap damping and
mass-unbalance hinge moment for which all modes of motion are sitsble and
for which there are no oscillatory modes which have less damping than the
basic missile.

In order to interpret properly the curves shown in figure 5, it is
necessary to remember that each point in the figure represents the com-
Plementary solution of equation (14). It will be recalled that the four
roots of this equation may be (a) all complex, corresponding to two oscil-
latory modes of motion, (b) two real and two complex, corresponding to
two apericdic modes and one oscillatory mode, or, (c) all real, corre-
sponding to completely aperiodic motion. Since the boundary of equal
roots represents the locus of points at which the frequency of oscillation
goes to zero, these three types of motion correspond to the regions of
figure 5 which are separated by the branches of this boundary. It was
stated previously that curves of very high damping not shown in the fig-
ure lie below and originate on the lower branch of the boundary of equal
roots. The constant damping curves which are shown originate on the upper
branch. Then motion of the type (a) occurs in the semi-infinite region
below end to the right of these two branches.  The oscillatory modes repre-
sented by the constant damping curves which lie below and originate on the
lower branch of the boundary of equal roots degenerate on this boundary -’
to two aperiodic modes, and type (b) motion ovecurs in the semi-infinite
region lying above the two branches of this boundary. Type (b) motion
also occurs in the region which lies primarily in the unstable third
quadrant lying to the left of and below the two branches. Type (c) motion
occurs in the region lying to the left of the_essentially vertical portion
"of the upper branch of the boundary of equal roots and between the two
approximately horizontal portions of the two branches. These reglons are
indicated in sketch (a) by letters corresponding to the type of motion
which occurs. :

When either one or both modes of motion are of an oscillatory nature,
an indication of the type of response to be expected may be obtained from
examination of the frequencies which occur at the point under considera-
tion. For instance, in the region of figure 5 where two osclllatory modes
are present, every point in the region must be the intersection point of
two constant demping curves in order to defirne completely the solution of
equation (14). Generally, one of these modes may be associated with the
alrframe, and the other with the flap. The primary response of the air-
frame will have the demping and frequency of . the constant-demping curve
whose frequency most nearly corresponds to the airframe frequency at the
point of intersection.

As an example of these remarks, consider point 1 in figure 5. Two
oscillstory modes must occur, one of which should be almost neutrally
damped since the point lies essentially on the neutral oscillatory bound-
ary, and should have a frequency of between 36 and 39 cycles per second.

LGy
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The undemped natural frequency of the control surface at this flight
condition is 41.7 cycles per second, and it might therefore be expected
that the high frequency undamped mode of point 1 would form the primery
component of the flap motion. The point also lies close to the constant-
damping curve which has the same T;/5 as the alrframe with flaps fixed,
and the second oscillatory mode should, therefore, have a frequency of
oscillation and time to damp to half amplitude of spproximately 1.69 cycles
per second and 0.634 second. This mode should form the primary component
of the airframe motion. Time histories of the response due to a unit step
control servo displacement for the basic missile and for the condlitions

of point 1 are presented in figure 6(a) and 6(b). The airframe motion
with free-floeting flaps has damping and frequency characteristics which
are almost identical with those for the missile with flaps fixed as
expected. The flap motion consists primerily of a smell-amplitude,
neutrally damped oscillation with a frequency of 38 cycles per second.

The effect of the undamped oscillations of the flep on the airframe motion
is negligible because of the relatively high frequency of the flap motion.

All the time histories presented in this report were obtained on the
Reeves Electronic Anslog Computer, and the points for which time histories
were computed are designated by the filled circles in Tigure 5 and denoted
by numbers from 1 through 7.

Points 2 and 3 of figure 5 lie in a region where type (b) motion
oceurs; that is, the motion should consist of one oscillatory and two
aperiodic modes. Both points lie close to the constent-damping curve
having the same T,/ as the missile with flaps fixed, and the airframe
motion, which for point 1 was found to consist primsrily of this mode,
should be unchanged. The flgp motion should now be well damped. These
results are confirmed in figures 6(c) and 6(d).

The time histories of the missile response shown in figures 6(e),
6(f), and 6(g) correspond to points 4, 5, and 6 in figure 5. Points L
.and 5 lie in a region where the oscillatory mode has greater dsmping than
that for the missile with flaps fixed, while point 6 lies on the oscil-
latory stebility boundary. The aperiodic modes associated with these
three points are well damped.

Figure 6(h) presents results for point 7 corresponding to HA=-0.00275
foot-pound per radisn per second and mass-unbaslance hinge moment of 0.563
foot-pound. This point is ocutside the range of mass-unbalance hinge
moments presented in figure 5, but lies in the region interior to the
small loop mentioned previously which is formed by the constant-damping
curve T;/5, = 0.634. Fach of the curves of constant demping greater than
that for the missile with flaps fixed also forms loops in this region,
and the conditions chosen for figure 6(h) correspond to the point where
the T,/ = 0.346-second curve crosses itself. Both modes damp to half
amplitude in this time, and the oscillation frequencies are 4.06 and 2k.1
cycles per second.
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Effect of flap demping and mess-unbslance hinge moment on missile
gain and frequency.- It can be seen from the results just presented that
the primery component of the airframe motion can be made to damp to half
amplitude in a specified time through the use of two different combina-
tions of flap damping and mass-unbelance hinge moment. The oscillatory
modes of points 5 and 7 damp to half amplitude in 0.346 second. The .
airframe responses, however, for the two cases as shown in figures 6(f)
and 6(h) have marked differences other than the presence of the second
oscillatory mode for point 7. The frequency of the primary component of
the airframe motion for point 7 is 2.4 times that of the basic missile,
while that for point 5 is 0.66 times that of the basic missile. In addi-
tion, the steady-state turning rate per unit servo displacement for
point 7 is approximately one-half that for the basic missile, while that
for point 5 1s almost twice that for the basic missile. Since a rela-
tively high sirframe frequency is generally desirable, it may appear that
the combination of A &and mass-unbaelence hinge moment corresponding to
point 7 is preferable; however, it should be noted that this value of Hp
is of the order of that which mey be obtained aerodynemically, and any
small change in its value cen cause drastic changes in the missile response.
Because of this, the conditions corresponding to point 5 are more practical.

It is importent to note this variation with mass-unbalance hinge
moment and HA of the frequency and gain, since these quentities, as well
as the demping, are essential factors governing the response of a missile.
In figure 5, the curves of constant frequency are given by the broken
lines which approach the boundary of equal roots as the frequency goes to
zeroc. It can be seen that the region where the maximum damping can be
obtained lies in the neighborhood of the cusp in the boundary of equal
roots; however, in practice it is desirable to keep the frequency as high
as possible, and it is evident that the frequency is very low in this
region. If the small loop region mentioned sbove is excluded, the maximum
frequency that can be obtained is that of the basic missile; hence, if the
demping is to be increased by the use of the flaps, the frequency will
always be somewhat less. However, though some decrease is unavoidable,
the reduction in frequency can be kept to a minimum by considering the
contours of constant frequency as well as those of constant damping in
selecting the value of HR end unbalance hinge moment.

From equations of motion (6), (7), (8), and (18), the expression for
the turning-rate gain for the missile-flap cdmbination is given by
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This expression may be simplified by disregarding the small terms and
may be written as

@ss B <méiToM> [Chw@ma% ‘CmACLs> - O\ CrupCl, - %CLa)] {(QEST‘E - Chs)

[Chacma, - ChoCmp = mfl:f (CLoncmA . CLA%)]

[mef (CmacLA - CmACL5> + cmﬁcha:l }-l | (20)

The variaetion in turning-rate gain as a function of mass-unbalsnce hinge
moment for the flight condition corresponding to figure 5 1s given by the
upper curve in figure 7. It can be seen that for very large positive
values of mass-umbalence hinge moment, the gain tends toward zero, snd
that for values of mass-unbalance hinge moment approaching the divergence
boundary, the gain tends to infinity. Thus there is a value of mass-
unbelance hinge moment to the right of the divergence boundary for which
the gain of the missile-flap combination is equal to that of the basic
missile. This value of mass-unbalance hinge moment is shown by the line
labeled "He" in figure 5. The exact expression for this boundary is
derived in Appendix C, but for most purposes, it is sufficiently accurate
to use the approximate expression .

[ Cuglng
fe = &2 \CraCag, - CLaCma> &)

It can be seen from figure 7 that for all values of mass-unbalance hinge
moment between the divergence boundary and that given by He, the turning-
rate gain for the missile-flap combination is always greater than that of
the basic missile. This consideration of the gain varistion with mass-
unbalance hinge moment, as well gs that of demping and frequency, is an
important one in the design of the flap.

The lower curve in figure T gives the steady-state value of the flap
deflection per unit servo deflection angle as a function of the unbalsgnce
hinge moment. The flight condition again corresponds to that of figure 5.
From equations (6), (7), (8), and (18) the expression for the flap gain is
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which may be simplified to

<§> Km [Cmacha + (?Lapma CLgcm%> ]
ESS=

(denominator of equation (20)) (23)

Note in figure T that near the divergence boundary where the damping is
the highest, as mentioned above, the flap gain tends to become very large.
For the present anslysis wherein 1t is assumed that the aerodynamic coef-
ficients are linear functlions of their varisbles, it is necessary to keep
the deflections small in order to stay within the limitations of the
theory, and care must be taken to avold values of unbalance hinge moment
near the divergence boundary.

Expressions for Hg and the divergence boundary.- It will be shown
in this section that approximate expressions for Hg and Hp can be
derived which will greatly simplify computations. The divergence boundary
is independent of HA, and the value of mass-unbalance hinge moment repre-
senting this boundary is obtained by setiting the constant term of the
characteristic equation (lh) equal to zero. On the other hand, the
constant-deamping contour representing the damping of the basic missile
is a function of HA and is not as simple to obtain. It can be seen from
figure 5, however, that the initisl portion of the curve is almost horizon-
tal and rapidly spproaches the value of unbalance hinge moment given by
Hy, becoming asymptotic tc it as the frequency approaches that of the
basic misslle. The region where the flap adds damping 1s thus a roughly
rectangular area. The transient solutions shown in figures 6(b), 6(c),
aend 6(d) for points 1, 2, end 3, respectively, on the line designated
by Hg in figure 5 show that the damping and frequency of the primary
mode of motlon corresponding to the missile mode is very nearly that of
the basic missile. Therefore the region of interest where the flaps add
damping can be considered with lilttle loss in accuracy to be bounded by
the divergence boundary, the horizontal portion of the contour which has
the same T,/, as the missile with flaps fixed, and the vertical line
designated by Hg. This latter 11ne will henceforth be referred to as

the Hg boundary.

The derivation of the exact expressions for the divergence and Hg
boundaries and the steps teken to simplify them are given in Appendix C.
It is shown that the divergence boundary is glven with good accuracy by
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Che,
H& = gm,c_: — p- (25)
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Since both boundaries are independent of HA, the region of interest is
bounded by two vertical lines in the stability diagram. Equations (24)
and (25) plotted as functions of sltitude, Mach number, static margin,
hinge moments, and misslle mass will show the effect on the region of
interest of each of these parameters. These effects are shown in fig-
ure 8. For each case only the parameter whose effect is being considered
was varied, and gll others were held at the values given in table I and
those corresponding to a Mach number of 1.5 and an altitude of 30,000
feet. The effect of variation in Mach number included using the aero-
dynamic derivatives given in table II.

In all the cases illustrated by figure 8, the region of damping
higher than the dsmping for the basic missile lies between the two bound-
eries. Thus if it is known how the boundaries are affected by each of
the above variables, it can easily be determined whether the motion will
be stable for all anticipated conditions. Any chosen value of mass-
unbalance moment must lle in the region of interest for all conditiams.
For example, it can be seen from figure 8(a) that the boundaries are
relatively independent of altitude, and there 1s a wide range of mass-
unbalance hinge moments which fall within the stable region for an alti-
tude variation of from sea level to 60,000 feet.

The effect of Mach number changes on the region of interest is shown
in figure 8(b). If the Mach number is increased, the region of interest
is shifted to the right, but it can be seen that at first the divergence
boundary is shifted much more rapidly than the Hyz boundary.

The effect of Cha can be seen from figure 8(c). Note that as Chq,
is increased negatively, the region of interest is shifted toward more
positive values of the unbalance hinge moment. In order to stay within
the stable region, therefore, it would be necessary to use larger positive
values of mess unbalance. Since values of mass-unbalance moment near the
divergence boundary give high damping, it can be seen that for a given
amount of mass unbalance, increasing Ch@ negatively will have the effect
of increasing the damping and decreasing the frequency.

Figures 8(c) and 8(d) show that if Chy and Cpy are varied simulta-
neously in the same direction, the divergence boundsry can be held con-
stant. The Hg boundary, however, ig affected by changes in Chq only,
and large changes in this quantity may have a significant effect on the
missile characteristics.




2k - B YIRS NACA RM A55LO9

Application of the Analysis

Design considerstions for a free-floating flap.- To design a free-
floating flap suitaeble for sugmentation of alrframe damping, it is nec-
essary to select values of mass unbalance and damping sbout the hinge
such that the response of the missile is improved for all anticlpated
flight conditions. As was pointed out in the foregoing sections, improve-
ment of the response involves considerstions of the damping, frequency,
and the turning-rate gain. In designing the flap, it is desired to
increase the damping as much as posslble without causing a large decrease
in frequency and, furthermore, it is desirable to keep the flap gain as
small as possible. '

To begin, it is necessary to estimate the range of Mach numbers and
altitudes for which the missile is expected ito function and to compile
the necessary aerodynemic and mass parameters to cover this range. For
the present case the Mach number is varied through a range of from 1.3
to 1.9, and the altitude range is from 5,000 to 60,000 feet. The param-
eters for these conditions are listed in tables I and II.

The next step is to use grephs of the type shown in figure 8 to
determine the combination of parameters which will give increased stabil-
ity throughout the range of flight conditions. The variation of the Hg
and divergence boundsries must be such that a value of mass unbalance can
be chosen which will fall between them for all anticipated flight condi-
tions. Once it is determined thet this condition is satisfied, the com-
bination of HR and mass-unbalance hinge moment giving the best response
can be found in one of three ways.

The first approach consists of the superposition of constant-damping
curves for the varlous flight conditions. For example, if it 1s desired
that the time to damp to half amplitude be léss than 0.5 second for all
casges, the contours corresponding to this value of damping can be con-
structed for each of the anticipated conditions. Then since each
constant-damping curve encloses an ares in vhich the time to damp to
half amplitude 1s less than that on the contour, thet is, less than 0.5
second, the enclosed areas common to all the contours will represent those
values of HA and mass-unbalance hinge moment for which the desired
damping is obtained. This approach 1s straightforward, but it is some-
what laborious in thet it involves the computation of a constant~damping
curve for each flight condition.

The second approach is to choose a reasonable velue of Hi and a
value of mass-unbalance hinge moment known to fall within the stable
region from a study of the aforementioned graphs showing the variations
of the Hp and divergence boundaries with flight conditions. These chosen
values can then be substituted into the characteristic equation and the
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solutions found by numerical methods for all flight conditions. This
epproach is based on trial and error and, though adequate, it may involve
much computation before the desired response is obtained.

The third method involves the construction of a stability diagram
for an intermediate. £light condition and the use of plots similar to those
shown in figure 8 to deduce values of HR and mass-unbalance hinge moment
which will give approximately the desired damping for all conditions. The
exact damping ratio and frequency for each condition can be obtained by
substituting these values into the characteristic equation and solving for
the roots by numerical methods. The third epproach will be used here.

It is desired to find values of HR and mass-unbalance hinge moment
for which the damping is greater than basic missile damping throughout
the range of flight conditions previously selected. To minimize the pos-
sibility of flutter, it may be desirsble to mass-balesnce the flap; an
examination of the graphs of figures 8(a) and 8(b) shows that a value of
zero maess-unbelance hinge moment always falls within the region between
the two boundaries, indicating that the damping may be increased through-
out the renge of Mach numbers and gltitudes being comsidered through a
suitable choice of HR only. ’

The intermediate condition for the present case is the flight condi-
tion corresponding to a Mach number of 1.5 and an altitude of 30,000
feet. The stability diagram for this condition is that given in figure 5,
and the freduency amd T,;, for each value of HA can be obtained by an
examination of the disgram. For purposes of illustration, the value of
HA corresponding to point 5 will be tentatively chosen. The damping and
frequency of the missile-flap configuration is obtalned for each of the
other flight conditions by substibuting the values of HA and mass-
unbalance hinge moment corresponding to point 5 and the quantities in
tables I and IT into equstion (14) and solving for the roots.

The results of these computsations are shown in figures 2@ and 10.
Also shown for comperison are results for the missile with position con-
trol and with spring-mounted control. In these figures the damping is
given in terms of the damping ratio {, which can be obtained from the
oscillation frequency and T,/ by using the equation

in 2
= _ (26)
Nty 2)% + (1n 2)°

Note thet the effect on the damping and freguency of replacing the posi-
tion control with the spring-mounted control is small, but that the effect
of the free-flosting flep can be considerasble. For low supersonic Mach
numbers the damping is not increased appreciebly, but for Msch numbers
greater than ebout 1.5, the demping ratio is increased by a factor of
approximately 3. At sea level the damping ratio is increased by

R
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approximately 80 percent. It remains essentislly constant up to an
altitude of sbout 30,000 feet, and then increases as the altitude is
increased further.

It 1s evident from the above discussion that as far as damping is
concerned, the combination of HA and mass-unbalance moment correspond-
ing to point 5 in figure 5 will result in an improvement of the missile
response throughout the specified range of conditions. As mentioned
previously, however, it is necessary to examine the flap gein Cﬁ/e)ss
before 1t can be determined whether the results are practical. The
variation in flap gain with altitude and Mach number is given in fig-
ure 11, and 1t can be seen that the ratioc of free-floating flap deflec-
tion to servo deflection remains relatively smell (less than -0.45) for
all flight conditions. '

The improvement in the wvariation of turning-rate gain of the missile
due to the torque spring is evident from figure 12, where the gains for
the missile with spring-mounted controls and free flaps are compared with
those for the missile with position controls and with flaps fixed. Note
that for both altitude and Mach number changes, the gain variastion has
been reduced considerably.

Transient solutlons for the flight conditions presented in this
section were obtained on the REAC and are shown In figure 13. In this
figure, the time histories on the left give the response of the basic
missile, and the time histories on the right give the response of the
missile with the flaps floating. It can be seen that the responses with
the flaps floating ere generslly improved as far as the damping is con-
cerned, and that the frequencies are reduced in all cases as expected.

Experimental investigetion of flap characteristics.- Throughout the
theoreticel analysis it was assumed that all the aerodynamic coefficients
were linear functlons of their respective variables, and the computations
were carried out for flaps which were closely balenced aserodynsmically.
In reference 6, it is shown that the hinge moments for aerodynamically
belanced trailing-edge control surfaces are highly nonlinear. However,
it is known from other data that by placlng a gap between the flap and
the trailing edge of the wing, much of the nonlinearity can be.removed.
Furthermore, it 1s shown in reference 7 that blunting the "trailing edges
of the flaps also has the effect of linearizing the hinge moments.

From these considerations it was declded that an aerodynamically
belanced flep with a blunt trailing edge mounted behind the wing with a
gap between the flap and wing, as shown in figure 14, would give the
desired linear characterlstics.  The use of aerodynamic balance was made
in the analysis because it was anticipated that the flaps could be used
to provide increased damping in roll as well gs in pitch; hence, the
leading and trailing edges were swept forward and the flap designed to
be closely balanced in order to provide increased negative values of the

W Ko N
¢ @iy A




NACA RM A55L09 i&

damping-in-roll derivative C(Ci,. Subsequent wind-tunnel tests, however,
showed that the effectiveness of the flap in providing increased roll
damping was not significent; the damping in roll was increased by a maxi-
mm of only 15 percent.

It was estimated from the hinge-moment data. of reference 6 that, for
a blconvex airfoil section, placing the hinge line at a point approxi-
mately one-third of the chord from the leading edge would result in &
closely balanced flap. Furthermore, since it is known from the results
of reference 7 that blunting the trailing edge of the flap would shift
the center of pressure rearward, the hinge line was placed at a point on
the midspan of the flap a distance 40 percent of the chord from the lead-
ing edge. The girfoll sectlion of the flap was a 5-percent-thick, biconvex
section, blunted at the trailing edge so that the ratio of trailing-edge
thickness to maximum thickness was 0.5. Preliminary tests with the same
flap with sharp trailing edges showed that the hinge moments were slightly
more linear with the blunt trailing edges, but the major effect of the
blunting was. to shift the center of pressure rearward sbout T percent of
the chord as expected.

The wind-tunnel tests were conducted in the Ames 6- by 6-foot super-
sonic wind tunnel, which is described in reference 8. The testing pro-
cedures and corrections to date can be obtained from reference 6. The
testing was done for a range of Mach numbers of 0.6 to 0.9 and 1.3 to 1.9
at & Reynolds number of 2.4 million. Hinge-moment measurements were made
at constant flap deflections through a nominal angle-of-attack range of
-17° to +17° with the flap settings varied in 4° increments through s
range of deflections of -20° to +20°. Representative results of the hinge
moments obtained in the wind-tunnel tests are presented in graphical form
in figure 15. Results for the complete range of tests variables are given
in tabulsr form in table III.

The results presented in figure 15 show that at subsonic speeds, the
flap is unstable and the hinge-moment variation is quite nonlinesr.
Although the magnitudes of the moments are relatively small, the fact
that they are unstable precludes the use of this flap at subsonic speeds.
The results for the supersonic Mach numbers shown in figures l5(c) and
15(d) show the hinge moments to be genersally linear and closely balanced
for the relatively large range of angles tested, and these flaps should
be satisfactory in this speed range for use as & free-floating damper.

The change in hinge-moment charascteristics obtained for these flaps
as the speed range 1s varied from subsonic to supersonic is characteristic
of most aerodynamic surfaces, and illustrates the problems of designing a
free-flogting flap which will function satisfactorily throughout the
operating Mach number range of present-day missiles.
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L3

CONCLUDING REMARKS

The use of mechanicel and aerodynamic devices intended to improve
missile response over & specified range of £light conditions appears to
be feasible on the basis of the results presented in this paper. The use
of these relatively simple devices gppeesrs particulerly adventageous if
the operational speed range lies wholly in either the subsonic or super-
sonic regime; their use on & missile which operates in both speed ranges
would present considerable difficulties from the standpoint of obtaining
the desired hinge-moment characteristics, and extensive experimental
investigations would be required. o —

The analysls made in this paper was relatively simplified from the
standpoint that only symmetrical motions were considered; that is, the
results apply only to an airframe performing motions in the pitch or yaw
plane. In any specific gpplication of such devices, the coupling which
may be present due to rolling will have an effect and must be investigated.
A further simplificetion was made when it was assumed that the flight
speed was invariant during the motions investigated. It should be noted
that if use is made of mass-unbalance hinge moment to obtain the desired
missile response, an effective hinge moment due to control deflection
will be present for any longitudinal accelerations of the missile airframe.
trajectory, it can be aeppreciable during the launch phase and must be
taken into account.

Ames Aeronsutical Laboratory
National Advisory Committee for Aeronsutics
Moffett Field, Calif., Dec. 9, 1955
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APPENDIX A

DERTVATION OF APPROXIMATE EXPRESSIONS FOR GAIN

Position Control; Floating Flaps Fixed

From equation (4) the gain for this case is

(A1)

@), - e
SS 27Cmy + CLa,Cmq_ E%

since T ='—m—-, this becomes
pVS
. pV(C -C >
5 ss

T Cng + PCLoOng 3

where p 1s the density of air and is of the order of 10™2 slugs per
cubic foot. The second term in the denominator is generally much smaller

than the first and cen be ignored leaving just
ORRCHIOICEE-LY
) (= O - =2 ¢ (a2)
M/ \"Is Lo,
5 ss maq, Cmg,
Position Control; Floating Flaps Operative

Equation (9) glves the exact expression for the turning-rate gain.
If the expressions for T, g, and Er are introduced, the denominstor

becomes
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and 1f the terms within the brackets containing p are disregarded
there results

= [(Cl'a,cmA <°machq, - cmmchA>:I

Substituting V = agM and the above expression into equation (9) gives

NACA RM ASSLO9

O Op P, = Omgy ) + O O = iy
(>ss (mac,) <> mef <C G - CLACmq> (cmAcha ) Cmu'ChA> (Ak)

Spring-Position Control

If, in the denominator of equation (12), the expression for T is
substituted, there results

_51? { <Ch5q55 - Km) <% Omg, + PC1.Cmg g-) - Chq 9S8 [% Cug +

o1

PCLgCmg

+ plg (cLscma - cLacma> ] } | (A5)

Disregarding the terms within the braces containing p and simplifying
gives

(a6)

<7> _ Ky CLoCmgs = CrgCmg,
e -
ss mCagM
cmu, <Ch5 - ch - Cmﬁchac
Controls Actuated by a Torque Servo

The equations of motion used in the analysis of the torque-servo
missile are very similar to those for the spring-position missile. The



equations for lift and pltching are, of course, identical, but in the place of equation (11), the
equation for the control surface is

(ECVD—C};%>7+[§CZC-UCDE—(%ED-l)ch%]B-GCD %un-c>a_-§g (A7)

where H 18 the hinge moment specified by the torque servo in response to an input signal.

-
5
2
5
g

The missile turning-rate gain is obtained by eolving for (7/H) from equations (2), (3),
and (A7) and letting D go to zero. If this is done, there results the expressicn

Q) - Gy - Cr
- {Cha Omy, + 5= CL g —S-) - chmc(cmﬁ + & oroln, -S—) (CLU,% CI@%XCIJ% mﬁi‘i)}

- The terms containing a factor of p are generally small compared to the remsining terms and may be "%
i disregerded, lesving ¥
X

(%>ss i Chacma. - ;huccmb\ )
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APTENDIX B
COEFFICIENTS OF THE CHARACTERISTIC EQUATION

From the equations of motion {(6), (7}, (8), end (18) it can be shown that the characteristic
equation may be put into the form

F(D) =D* + AD® + AD® + 43D + Ag = O ' (B1)
where
Cm, + Cms = gse =2
A3=CL°"_ oq cm“_c_.+ Phac [ (cmﬁ-_clﬁcﬁa ]-chAf.lEE_ (B2)
27 ap 2v Kp - CthSc ar VO‘A 2t oy 2V XVie
mesSe [ 1p g GLA q88> _ Omg + %my 3 Cop - Cmg,
Az = Ig [ﬁ (cmA - %%'Cm@ )" or ] ChA NVIp \ 2T Op ﬁ) + Oy -

E;A '2% (chcmq ' %Cm"‘) i‘? ¥ m;:]i%c::jsa { 2::Av (cl'“cmﬁ ) %Gm‘l) "oy (Cmﬁ e 2V>

age” [CLe 2/, _%s. &\N
b ovzg L BT T Vo \ Um0 " 3 Mady) | f

~
tx

Al

—

gt

2
8
2
&
2




A; = Ciy e%i:; (cmQL + CLofmg hiv) + 2:'% (mf;ff + 1) (chGmA "%%)*(%%%)%(% + Gma) -

Chp (Clg, Cmg + Cmg 2 chq.[:clﬂ. 1f(

Ch: qSE qsaé clﬂa +
op \ 27 ap ey Op L 2r  Vay

2T Cmd" ] K]I-ChaqSE 2Vle

o O . 0o 2N
3 RRE)- e (o - cng) | g (0% 1e) (i - Cuatmy) - 5 (contra -

0 oG ) - (’*c\/c_a\ Crg %o Omy 5 s O} (84)
g e "\ \Te / \UA ar op 2V/ o7 of J o

Ao

=cjaf {ChA(CmcL*cEL}qcmq% - [ g'lécmq efv(lﬂcm“ CI'“CI"A):\
) s [ - 90
ons(25) (Omnn - Crng) + OO *+ 2 g ) 492 (o) (GmeCiy - Ouclimy) |} 59)

If the spring constant Kp is made very large, equation LB,L) reduces to the characteristic
equation for & position-control missile where motion is governed by equations (6), (7), and (8).

60TCEY W VOVN
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APPENDIX C
TERIVATION AND SIMPLIFICATION OF EXPRESSTONS FOR BOUNDARIES
" NOTATION

The expressions to be derived in this section are rather lengthy, 80 to simp]if'y the writing
the following notations are introduced .

G-y e e z«rcmaev)} o @

Kip - ChgqBe

Fo = —{ (cm“ or Umg EV) KTC fﬂ;::;ﬁ [' (Cmﬁ * _CEL_TQ Ong 2cv 27V (cm%clu CLacma):l} (c2)

20 - Crqling %7 }
{oner0m, + G ) + O = (v + oo ) + 3 (0 - oy |

e [ () (it et 2 (ot Yo (e g )]}

—
EJ

- "_(Cm“ 2T %2V>—%A+5A< A'EE'?'ILA'C”_‘&'EEV i'.PKTC]i%chfjsE {2361; [%(%CI“"%%}

(c3)
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a qA k_qa CL 2t Cmg, EY) CLA ' (©)
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THE DIVERGENCE BOUNDARY

The divergence boundsry is obtained by setting the ccefficient Ay of the characteristic
equatlon to zero. If equation (B5) is written in the foregoing notation, the expression for A,

is

o = 3e - o5 &

. Bquating to zero and solving for mass-unbalance hinge moment gives

EIfBz P N (c8)

Hp =
Conesider the term B, in the numerator. If the expressions for q and T are substituted, there

results

By = 1o Y8 fo (Emcmn"'PCL-.Cmn a\+Ch,,f (a"‘cmﬁchACma Q ol (CLAcmﬂ CLﬁcmAﬂ

dTUA clyp L =2\~

e LAY G LN (R -%%)%* (8 o+ 5o

HOTCY W VOUN

E
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The terms multiplied by the factor p are small compared to the remain-

ing terms and mey be disregarded, so that the expression for B,
written

By = e-mA If (Cma% - %%) _Toet (%%)

- CngqaSeE

Substitution of equations (C6) and (C9) into equation (C8) glves

<KT - chsqsa> (cmachA - CmAChoD + CnpCmgChg, aSE

may be

(c9)

HD=ng_i

THE Hg BOUNDARY

<KT -Chach':> (CL or.cmA - c];ﬂcma)+ <CL5cmA - CIACI"'S) ChachE

(¢10)

From equations of motion (2), (3), and (18) the characteristic
equation for the spring-position missile with floating flaps fixed is

D® + QD +P, =0
which represents a simple second-order system of the form
D? + 20w,D + wy® =

The roots of equation (Cll) are

(c11)
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Since the Hg boundary represents the mass unbalance for which the
damping and frequency of the missile with floating flaps are equal to that
for the misslile with flaps fixed, the expression for Hg can be obtained
by substituting these values of r and p and the coefficients from
Appendix B into equations (16) and (17). Solving for the unbalance

hinge moment from the resulting equations gives

gLo(Bz + Po® - ByPo)
Hg = i (c12)
£ + aP,

As for the divergence boundary, if T =m/pVS and q = (1/2)pV® are
substituted and the terms of the order of p or smaller are disregarded,
the following expressions result:

(ov®)3(s3)® Chg, ASE ]
_ - —_— 1
b2 I, Te [Cm“Ch”—" Cmpha * o Cpg aSG <Cmachﬁ) | (c13)
P __S"_VZ_E‘?(C +_Ch$?_s_a_c ) (Cc1k)
© 2Iy o Kp - ChgaSc 0
_ pV28c': ChA 1 Chd(:q-sa
m - - If”'g(%‘%'m%)] (€19)
(pv?se)® ) ch%qu )]
- [y - ) - 5 (- )] 20
2, Cmy, CL
6 = pVESC <f I:f _ m?) (Cl'?)

Substitution of equations (C13) through (Cl7) into equation (Cl2) results
in the simplified expression

gma[?hu,_ Ei. EEEEEEEEEi— + Cm%>}

m&lp Che, @ mazf
ERa I e
¥ hgaS¢

i Staass . -2
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Since, in general, If << Iy, this expression can be further simplified
to

gmc Cha,
B méle - Cpg a8t ] m&l
7, Cno - Ol --—-EEE—--:-< e Cm%) (c19)
Kp - Chsch Y

THE He BOUNDARY

The turning-rate gain is the steady-state value of the rate of
change of flight-path angle ¥ per unit canard-control-actustor deflec-
tion €. Equation (13) may be written

@) - 2 (Cngtr - Orgon,)
“/ss 270, P, <?T - Ch6q5%>

(c20)

as the gain for the spring-control missile with flaps fixed.

Similarly, from equatiaons (6), (7), (8), and (1) the gain for the
missile with canard surfaces mass-balanced and with flaps-floating is

(c21)

<?) M [(émscha - 0160@¥>Chm = \OmgCLq, - CLBCm%>ChAJ.

(?TcAcf> <#T - chsqs§> <?2 - mi:f %)

The He boundary represents the flap mass uhbalance for which the gains
are equal; therefore, if we equate the right-hand sides of equations (020)
and (C21) and solve for the unbalance hinge moment, there results )

Ire P, [/CmsCr - CLsCm
- e B (e o} e

If the expressions for By, Po, and f from equations (C13), (Cl4), and
(C16) are used, there. results the simplified expression )

(c23)
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TABLE I.- MASS AND GEOMETRIC PARAMETERS OF THE

NACA RM AS5LO9

MISSILE

missile mass, slugs. . .
mass of one floating flap; slugs .

M.A.C.

of wing, ft « « « « . . .

wing plan-form ares, sq £t . . . .
M.A.C. of floating flap, £t . .
plan-form aree of one flap, sg ft

see

see "symbols"), f£ . ..
"symbols" ), ft

longitudinal moment of inertia, slug-ft2 .
moment of inertis of flap, slug-ft2.

moment of inertia of control surface, slug-ft2

. - . 3.33
. . 0.0675
.. l.475
. 2.262
0.416
0.248

. : : 2.184

2.776

... 23.28

. 0.000457]
. 0.0006

TABLE IT.- AERODYNAMIC PARAMETERS OF THE MISSILE
Parsmeter =1.3 | M=1.5 | M=1.9
Clg, L. okt 3.7h0 3.156

CLg 0 0 o}

Cr,, 1.26 1.20 .| 1.03
Crng, ~-0.6199 | -0.695 -0.586
Cmg, -1.74 -1.67 "} -1.63
Crng, 0.746 0.600 0.500
Crmp -1.021 -1.183 -0.850
Cog -5.86 -5.80 ~5.77
Che, -0.0020 | -0.0035 | -0.0043
Chac -0.0040 | -0.0017 | -0.0020
Chg -0.0100 | -0.0080 | -0.0070
Cha -0.0120 | -0.0095 | -0.0080
g/c -0.153 -0.186 -0.189

by Gl A
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TABLE IIX.- HINGE-MOMENT CHARACTERISTICS OF THE FREE-FLOATING FLAP - Contimued
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TABLE ITT.- HINGE~-MOMENT CHARACTERISTICS CF THE FREE-FLOATING FLAP - Continued

(1) Nominal A = 16°
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TABLE ITI.- HINGE-MOMENT CHARACTERISTICS CF THE FREE-FLOATING FLAP - Concluded

(k) Noxinel A = 20°
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Figure 1.- Dimensional and angular relstionships.
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Figure 2.- Schemgtic drawing of position and spring-mcunted controls.
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Figure 6.~ Time histories of turning rate and flap defléction for the basic missile and for the
conditions of mass-unbalence hinge moment and flap damping shown in figure 5.
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